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1 Overview of MATALAB GEOTools

The NCBI Gene Expression Omnibus (GEO) represents the largest repository of microarray
data in existence. One difficulty in dealing with GEO is finding the microarray data that
is of interest. As part of the NCBI Entrez search system, GEO can be searched online
via web pages or using NCBI Eutils. However, the web search is not as full-featured as it
could be, particularly for programmatic access. NCBI Eutils offers another option for finding
data within the vast stores of GEQO, but it is cumbersome to use, often requiring multiple
complicated Eutils calls to get at the relevant information. We have found it absolutely
critical to have ready access not just to the microarray data, but to the metadata describing
the microarray experiments. To this end we have created GEOmetadb, and now part of
tools are ported to MATLAB GEOTools. This document is largely adapted from *Using the
GEOmetadb Package’ vignette for R, replaced with examples with MATLAB/GEOTools.

All examples included in this user guide were texted under MATLAB 2007b with Intel
Mac Pro. Other machines will be tested later. MATLAB Statistics toolbox and Bioinfor-
matics toolbox are required for the Applications Section.

1.1 What is GEOmetadb?

The GEOmetadb is an attempt to make querying the metadata describing microarray exper-
iments, platforms, and datasets both easier and more powerful. At the heart of GEOmetadb
is a SQLite database that stores nearly all the metadata associated with all GEO data types
including GEO samples (GSM), GEO platforms (GPL), GEO data series (GSE), and curated
GEO datasets (GDS), as well as the relationships between these data types. This database
is generated by our server by parsing all the records in GEO and needs to be downloaded
via a simple helper function to the user’s local machine before GEOmetadb is useful. Once
this is done, the entire GEO database is accessible with simple SQL-based queries. With the
GEOmetadb database, queries that are simply not possible using NCBI tools or web pages
are often quite simple.

The relationships between the tables in the GEOmetadb SQLite database can be seen in
figure 1.

1.2 What is GEOTools/ MATLAB?

Modeled after GEOmetadb, The GEOTools/MATLAB is a set of MATLAB fuctions to access
GEO meta data stored in SQLite database GFEOmetadb.sqlite. Users are highly encouraged
to read the original document of ”Using the GEOmetadb Package” for R/Bioconductor.
However, the main difference of this user guide from the original R/Bioconductor version
are merely in MATLAB specific sectioin and all examples. Nothing else changed in terms of
database, and actual result obtained from both packages.
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Figure 1: A graphical representation (sometimes called an FEntity-Relationship Diagram) of
the relationships between the tables in the GEOmetadb SQLite database

1.3 Conversion capabilities

A very typical problem for large-scale consumers of GEO data is to determine the relation-
ships between various GEQO accession types. As examples, consider the following questions:

o What samples are associated with GEO platform “GPL96”, which represents the
Affymetrix hgul33a array?

e What GEO Series were performed using “GPL96”7
o What samples are in my favorite three GEO Series records?
o How many samples are associated with the ten most popular GEO platforms?

Because these types of questions are common, GEOmetadb contains the function geoConvert
that addresses these questions directly and efficiently.

1.4 What GEOmetadb, GEOTools/MATLAB is not

We have faithfully parsed and maintained in GEO when creating GEOmetadb and MATLAB
GEOTools. This means that limitations inherent to GEO are also inherent in GEOmetadb
and MATLAB GFEOTools. We have made no attempt to curate, semantically recode, or
otherwise “clean up” GEO; to do so would require significant resources, which we do not
have.

GEOmetadb and GEOTools/MATLAB does not contain any microarray data. For access
to microarray data from within R/Bioconductor, please look at the GFEOgquery package



and GEOTools/MATLAB. In fact, we would expect that many users will find that the
combination of GEOmetadb and GEOquery, for R/Bioconductor, and GEOTools/MATLAB
with Bioinformatics Toolbox/MATLAB are quite powerful.

2 Getting Started

Installation of MATLAB GEOTools are straightforward,
1. Download and unzip from http://meltzerlab.nci.nih.gov/apps/geo.

2. Copy the folder to a location you prefer (we suggest to put in a directory called
/Applications/ MATLAB_R2007b/UserPackages/GEOTools). Here directory /Appli-
cations/MATLAB_2007b is the matlabroot for current installation. User may change
it according to his own MATLAB installation.

3. Launch MATLAB, and type

>> cd /Applications/MATLAB_R2007b/UserPackages/GEOTools
>> GEQOToolsSetup

GEOToolSetup function will check for the latest update (you may want to run this program
at a later time), download the GEOmetadb.sqlite, build the necessary .mex code, and then
set the correct path for MATLAB access.

2.1 Getting the GEOmetadb database

This package does not come with a pre-installed version of the database. This has the
advantage that the user will get the most up-to-date version of the database to start; the
database can be re-downloaded using the same command as often as desired. Remember,
after installing GEOTools and set the MATLAB path to the location, you are ready for
downloading database. The download and uncompress steps are down automatically with a
single command, GEOgetSQLiteFile.

>> GEOgetSQLiteFile();
The old version of ’GEOmetadb.sqlite’ has been renamed to ’'GEOmetadb.sqlite.backup’.
The SQLite DB ’GEOmetadb.sqlite’ (size of 510.5 MB) has been installed in ...

The default storage location is in the location where GEOgetSQLiteFile.m function is,
and the default filename is GEOmetadb.sqlite; it is best to leave the name unchanged unless
there is a pressing reason to change it. The function also saves a GEOmetadb_version.log file
such that if you invoke the program twice, or later, it will check the version number before
downloading a new copy. However, if one would like to replace the SQLite database anyway,
either the database GEOmetadb.sqlite and/or the log file GEOmetadb_version.log has to be
deleted from the location.

Since this SQLite file is of key importance in GEOmetadb and MATLAB GEOTools, it

is perhaps of some interest to know some details about the file itself.
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>> 1s( ’-1 GEOmetadb.sqlite’ );
-rW-r—--r--— 1 yidong yidong 535349248 Apr 14 18:57 GEOmetadb.sqlite’.

Now, the SQLite file is available for connection. Different from the standard DBI func-
tionality as implemented in RSQ)Lite function dbConnect, MATLAB GEOTools implemen-
tation connects to GEOmetadb.sqlite each time with SQL query command and closes connec-
tion immediately. The implementation is not efficient for large number of SQL queries, but
sufficient enough for our purpose. Users are highly recommended to read MATLAB mex/C
code, as well as SQLite C/C4++ API (www.sqlite.org/c3ref/intro.html) for additional
functionalities if needed.

2.2 A word about SQL

The Structured Query Language, or SQL, is a very powerful and standard way of working
with relational data. GEO is composed of several data types, all of which are related to each
other; in fact, NCBI uses a relational SQL database for metadata storage and querying. SQL
databases and SQL itself are designed specifically to work efficiently with just such data.
While the goal of many programming projects and programmers is to hide the details of SQL
from the user, we are of the opinion that such efforts may be counterproductive, particularly
with complex data and the need for ad hoc queries, both of which are characteristics with
GEO metadata. We have taken the view that exposing the power of SQL will enable users
to maximally utilize the vast data repository that is GEO. We understand that many users
are not accustomed to working with SQL and, therefore, have devoted a large section of the
vignette to working examples. Our goal is not to teach SQL, so a quick tutorial of SQL is
likely to be beneficial to those who have not used it before. Many such tutorials are available
online and can be completed in 30 minutes or less.

3 Examples

3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the SQLite web
site. We have built some functions here only to be useful.

The GetSQLiteTables () function lists all the tables in the SQLite database. As we state
before, we embeded database connection and closing within each function all. Therefore, you
do not need to perform open/close connections as other database tools normally required (see
MATLAB Database Toolbox, or RSQLite). In following example, table names are stored in
geoTables. The function also prints out all table names.

>> GetSQLiteTables( ’GEOmetadb.sqlite’ );

No. | Table Name



| gds_subset
| geoConvert
| geodb_column_desc
| gpl

| gse

| gse_gpl
| gse_gsm
|

|

|
+
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gsm
10 metalnfo
sMatrix

_________________ }

There is also the ListSQLiteFields() function that can list database fields associ-
ated with a table. Note that if table name is not specified, the function behaves just as
GETSQLiteTables.

>> ListSQLiteFields( ’GEOmetadb.sqlite’, ’gse’ )

No | Name | Type
______ o

1 | ID | REAL

2 | title | TEXT

3 | gse | TEXT

4 | status | TEXT

5 | submission_date | TEXT

6 | last_update_date | TEXT

7 | pubmed_id | INTEGER

8 | summary | TEXT

9 | type | TEXT

10 | contributor | TEXT

11 | web_link | TEXT

12 | overall_design | TEXT

13 | repeats | TEXT

14 | repeats_sample_list | TEXT

16 | variable | TEXT

16 | variable_description | TEXT

17 | contact | TEXT

18 | supplementary_file | TEXT
______ o

Sometimes it is useful to get the actual SQL schema associated with a table. As an
example of doing this and using an SQLite PRAGMA function, we can get the table schema
for the gpl table.

>> SQLiteQuery( ’GEOmetadb.sqlite’, ’PRAGMA TABLE_INFO(gpl);’ )

ans =
[ o] 'ID? 'REAL’ [o] [NaN] [o]
[ 1] ‘title’ »TEXT’ [o] [NaN] [o]
[ 2] ’gpl’ *TEXT’ [o] [NaN] [o]
[ 3] ’status’ 'TEXT’ [o] [NaN] [o]
[ 4] ’submission_date’ 'TEXT’ [o] [NaN] [o]
[ 5] ’last_update_date’ »TEXT’ [o] [NaN] [o]



[ 6] ’technology’ 'TEXT’ [o] [NaN] [o]

[ 7] "distribution’ 'TEXT’ [o] [NaN] [o]
[ 8] ’organism’ 'TEXT’ [o] [NaN] [o]
[ 9] ‘manufacturer’ 'TEXT’ [o] [NaN] [o]
[10] [1x20 char] »TEXT’ [o] [NaN] [o]
[11] ’coating’ 'TEXT’ [o] [NaN] [o]
[12] ’catalog_number’ 'TEXT’ [o] [NaN] [o]
[13] ' support’ »TEXT’ [o] [NaN] [o]
[14] "description’ »TEXT’ [o] [NaN] [o]
[18] 'web_link’ »TEXT’ [o] [NaN] [o]
[16] ’contact’ 'TEXT’ [o] [NaN] [o]
[17] ’data_row_count’ 'REAL’ [o] [NaN] [o]
[18] ’supplementary_file’ >TEXT’ [o] [NaN] [o]
[19] "bioc_package’ 'TEXT’ [o] [NaN] [o]

3.2 Writing SQL queries and getting results
Select 5 records from the gse table and show the first 7 columns.

>> rs = SQLiteQuery( ’GEOmetadb.sqlite’, ’SELECT * FROM gse LIMIT 5;° );
>> format long
>> rs(:,1:7)

ans =

Columns 1 through 2

[1] ’NHGRI_Melanoma_class’

[2] ’Cerebellar development’

[3] ’Renal Cell Carcinoma Differential Expression’

[4] ’Diurnal and Circadian-Regulated Genes in Arabidopsis’

[5] ’Global profile of germline gene expression in C. elegans’
Columns 3 through 6

’GSE1’ ’Public on Jan 22 2001’ ’2001-01-22" ’2005-05-29’

’GSE2’ ’Public on Apr 26 2001’ ’2001-04-19’ ’2005-05-29’

’GSE3’ ’Public on Jul 19 2001’ ’2001-07-19’ ’2005-05-29’

’GSE4’ ’Public on Jul 20 2001’ ’2001-07-20" ’2005-05-29’

’GSES’ ’Public on Jul 24 2001’ ’2001-07-24" ’2005-07-18"
Column 7

[10952317]

L Nal]

[11691851]

[111685633]

[11030340]

Get the GEO series accession and title from GEO series that were submitted by “Sean
Davis”. The “%” sign is used in combination with the “like” operator to do a “wildcard”
search for the name “Sean Davis” with any number of characters before or after or between
“Sean” and “Davis”.

>> sqlcmd = ’SELECT gse,title FROM gse WHERE contributor like ’’%Sean¥%Davis®’’;’;
>> rs = SQLiteQuery(’GEOmetadb.sqlite’, sqlcmd )
rs =
’GSE2553° ’NHGRI_Sarcoma_Baird’
’GSE4406’ ’Gene expression profiling of CD4+ T-cells and GM6990 lymphoblastoid cell lines



As

’GSEB357’ ’NHGRI Menin ChIP-Chip’
’GSET7376’ ’Detection of novel amplification units in prostate cancer’
’GSE8486’ ’Whole genome DNAse hypersensitivity in human CD4+ T-cells’

another example, GEOmetadb can find all samples on GPL96 (Affymetrix hgul33a)

that have .CEL files available for download.

>>
>>
>>
>>

sqlcmd = [’SELECT gsm, supplementary_file FROM gsm ’];
sqlcmd = [sqlcemd °WHERE gpl=’’GPL96’’ and supplementary_file like ’’%CEL.gz’’;’];
rs = SQLiteQuery(’GEOmetadb.sqlite’, sqlcmd );
size( rs )
ans =
8342 2

But why limit to only GPL967 Why not look for all Affymetrix arrays that have .CEL

files?

And list those with their associated GPL information, as well as the Bioconductor

annotation package name?

>>
>>
>>
>>
>>
>>

Of

sqlcmd = [’SELECT gpl.bioc_package,gsm.gpl,gsm,gsm.supplementary_file ’];
sqlcmd = [sqlcmd *FROM gsm JOIN gpl ON gsm.gpl=gpl.gpl ’];

sqlcmd = [sqlcmd °WHERE gpl.manufacturer=’’Affymetrix’’ ’ ];

sqlcmd = [sqlcmd ’AND gsm.supplementary_file like ’’%CEL.gz’’;’];

rs = SQLiteQuery(’GEOmetadb.sqlite’, sqlcmd );
rs(1:5,:)
Columns 1 through 3
’hu6800° ’GPL80’ ’GSM575°
’hu6800° ’GPL80’ ’GSM576°
’hu6800° ’GPL80’ 'GSMLTT’
’hu6800° ’GPL80’ ’GSM578°
’hu6800° ’GPL80’ ’GSM579°
Column 4
*ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM5675/GSME75.
*ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM5676/GSME76.
*ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM5677/GSMETT .
*ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM5678/GSME78.
*ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM579/GSM579
course, we can combine programming and data access. A simple loop shows how

to query each of the tables for number of records. Note that here we request table names
from function GetSQLiteTables(), but instead of printing all names out, we store it in a
cell-array geoTables.

>>
>>
>>
>>
>>
>>

geoTables = GetSQLiteTables( ’GEOmetadb.sqlite’ );

for i = 1:length( geoTables )
sqlcmd = [’SELECT count(*) FROM ’ geoTables{i} ’;’];
count (i) = SQLiteQuery( ’GEOmetadb.sqlite’, sqlcmd );
fprintf( 1, ’%20s | %d \n’, geoTables{i}, count );

end

gds | 2085
gds_subset | 12225

cel.gz’
cel.gz’
cel.gz’
cel.gz’

.cel.gz’



geoConvert | 971946
geodb_column_desc | 104
gpl | 4505
gse | 8301

gse_gpl | 11410

gse_gsm | 235207

gsm | 214340

metalnfo | 2
sMatrix | 10423

3.3 All about SQLiteQuery() function

SQLiteQuery is an essential function for accessing SQLite database. We have implemented a
simple yet powerful enough query for MEX function such that MATLAB Database Toolbox
is not required. As we stated before, this implementation is not intend for complicated SQL
commands, rather, it serves a purpose for demonstrating the capability of GEOmetadb.sqlite
and beyond, as we will continue this user guide in later section. Again, for each SQL query,
we connect to database, execute SQL command, and then close the connection immediately.
In case you more information than the examples showed in last section, here are three variants
of the same function call.

SQLiteQuery( dbName, sqlCommand )

rs = SQLiteQuery( dbName, sqlCommand );

[rs, cNames] = SQLiteQuery( dbName, sqlCommand );

[rs, cNames, cTypes] = SQLiteQuery( dbName, sqlCommand );

The first example will display the query result directly to the screen. The second example
will store the query result into variable rs. The third example will return column names into
cNames, and the forth example will also return the data type for each column into cTypes.
Both cNames and cTypes are cell arrays with text strings. The contents of cNames depend
on the SQL command, while cTypes are related to the coresponding column. Valid strings
for cTypes can be found in ”Interacting with the database” section, such as in the sample
of SQLiteQuery( ’GEOmetadb.sqlite’, ’PRAGMA TABLE_INFO(gpl);’ ) (third column in
query result). Please note that the length of the dbName of the SQLite database can not be
longer than 256 characters, the length of sqlCommand can not be longer than 5000 characters,
and the sqlCommand has to be terminated with ’;’, as you may find throughout this user
guide. Here we provide one quick illustration,

>> [rs, cNames, cTypes] = SQLiteQuery( ’GEOmetadb.sqlite’, ’SELECT * FROM gse LIMIT 5;° );

>> cNames’

ans =
’ID’
’title’
’gse’
’status’
’submission_date’
’last_update_date’



’pubmed_id’

’summary’
’type )
’contributor’
’web_link’
’overall_design’
’repeats’
’repeats_sample_list’
’variable’
’variable_description’
’contact’
’supplementary_file’
>> cType
Columns 1 through 8
’REAL’ >TEXT’ >TEXT’ >TEXT’ >TEXT’ >TEXT’ > INTEGER’ >TEXT’
Columns 9 through 16
>TEXT’ >TEXT’ >TEXT’ >TEXT’ >TEXT’ >TEXT’ >TEXT’ >TEXT’
Columns 17 through 18
>TEXT’ >TEXT’

These information may be useful for further data processing.

3.4 Conversion of GEO entity types

Large-scale consumers of GEO data might want to convert GEO entity type from one to
others, e.g. finding all GSM and GSE associated with "GPL96’. Function GEOconvert ()
does the conversion with a very fast mapping between entity types. Example of converting

"GPL96’ to other possible GEO types in the GEOmetadb.sqlite is provided below,
>> outGEOacc = GEOconvert( ’GEOmetadb.sqlite’, ’GPL96° );

Check what GEO types and how many entities in each type in the conversion. Conversion
results are saved into MATLAB structure with appropriate conversion type, and the nx2 cell-
array acc stores from_ace in first column and fo_acc in second column.

>> outGEQacc
outGEOQacc =
gsm: [1x1 struct]
gse: [1x1 structl
gds: [1x1 structl
smatrix: [1x1 struct]
>> outGEDacc.gse
ans =
acc: {632x2 cell}

The GEOconvert connects all GSM, GSE, GDS, and sMatrix to "GPL96’. As shown
above, there are total of 532 GEO Series that utilize GPL96 platform. Examine first 5 GSE,
GDS, and seriesMatrix accession numbers with GPL96.

>> outGEOacc.gse.acc(1:5,:)

ans =
’GPL96’ ’GSE1000°
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’GPL96’ ’GSE10024°

’GPL96’ ’GSE10043’
’GPL96’ ’GSE10072’
’GPL96’ ’GSE10089’

>> outGEOacc.gds.acc(1:5,:)

ans =
’GPL96’ ’GDS1023”
’GPL96’ ’GDS1036”
’GPL96’ ’GDS1041”
’GPL96’ ’GDS1050”
’GPL96’ ’GDS1062’

>> outGEOacc.smatrix.acc(1:5,:)

ans =
’GPL96’ ’GSE1000_series_matrix.txt.gz’
’GPL96’ ’GSE10024_series_matrix.txt.gz’
’GPL96’ ’GSE10043_series_matrix.txt.gz’
’GPL96’ ’GSE10072_series_matrix.txt.gz’
’GPL96’ ’GSE10089_series_matrix.txt.gz’

3.5 More advanced queries

Now, for something a bit more complicated, we would like to find all the human breast
cancer-related Affymetrix gene expression GEO series.

>> sqlSelect = [’SELECT DISTINCT gse.title, gse.gse ’];

>> sqlFrom = [’FROM gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm ’];
>> sqlFrom = [sqlFrom ’JOIN gse ON gse_gsm.gse=gse.gse ’];
>> sqlFrom = [sqlFrom ’JOIN gse_gpl ON gse_gpl.gse=gse.gse ’];
>> sqlFrom = [sqlFrom ’JOIN gpl ON gse_gpl.gpl=gpl.gpl ’1;

>> sqlWhere [’WHERE gsm.molecule_chl like ’’%total RNAY%’’ °1;

>> sqlWhere [sqlWhere ’AND gse.title LIKE °’’Ybreast cancer’%’’ ’];

>> sqlWhere [sqlWhere ’AND gpl.organism LIKE ’’%Homo sapiens’%’’;’];
>> rs = SQLiteQuery(’GEOmetadb.sqlite’, [sqlSelect sqlFrom sqlWherel );

>> rs(1:5,:)

ans =
[1x118 charl] ’GSE2294°
[1x116 charl] ’GSE8465°
[1x97 charl] ’GSE9893°
[1x63 charl] ’GSE1864°
[1x92 charl] ’GSE4000°

Perhaps a little programming will provide more compact display of the result. Remeber,
the rs is a cell-array, so use curly bracket to access the content in each cell.

>> for i = 1:5, fprintf( 1, ’%50s | %s\n’, rs{i,1}(1:50), rs{i,2} ); end
A Modular Analysis of Breast Cancer Reveals a Nove | GSE2294
A Phase II Study of Neoadjuvant Gemcitabine Plus D | GSE8465
A gene expression signature predicting the recurre | GSE9893
| GSE1864
| GSE4000

A genomic view of estrogen actions in human breast
A molecular ’signature’ of primary breast cancer c
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Again, you do not need to disconnection from database if you use the functions provided
by GEOTools, since all connections are immediately closed after querying.

If you want to remove old GEOmetadb. sqlite file before retrieve a new version from the
server (this step is not necessary, since the function GEOgetSQLiteFile() rename the old
copy of GEOmetadb.sqlite to a backup version, and then download the updated database),
execute the following codes:

>> delete( ’GEOmetadb.sqlite’ );

or, just go to the directory and delete the file name GEOmetadb.sqglite, and possibly
GEOmetadb.sqlite.backup.

4 Applications of GEOTools for data analysis

Let’s assume that we would like to explore the inflammatory breast cancer studies in GEO
database. One of the quickest search is,

>> [rs, cNames] = SQLiteQuery( ’GEOmetadb.sqlite’,
’SELECT * FROM gse WHERE summary like ’’%inflammatory)breastycancer®’’;’);
>> [cNames’ rs’]

ans =
*ID’ L 1354] L 4901]
‘title’ [1x26 char] [1x35 char]
‘gse’ ’GSE1561° ’GSEL847’
’status’ [1x21 char] [1x21 char]
’submission_date’ ’2004-07-14° ’2006-09-15"
’last_update_date’ ’2005-05-29° ’2008-01-24"
' pubmed_id’ i 158979071 [ 17999412]
’ summary’ [1x744 charl] [1x236 char]
’type’ ’parallel sample’ ’LCM°
’contributor’ ’Richard,D,Iggo’ [1x42 char]
’web_link’ ) )
’overall_design’ ) [1x204 char]
’repeats’ 2 2
’repeats_sample_list’ 7 7
’variable’ 2 2
[1x20 charl] ) )
’contact’ [1x279 char] [1x157 char]
’supplementary_file’ [1x84 charl] [1x84 char]

2 data sets were deposited to GEO as we find. And we can quickly examine some key
features: associated array platform, number of samples, etc, by doing followings,

>> out = GEOconvert( ’GEOmetadb.sqliite’, rs(:,3) );
>> out.gpl.acc

ans =

’GSE1661° 'GPL96"’

’GSEbL847° 'GPL96"’
>> length( strmatch( rs{1,3}, out.gsm.acc(:,1) ) )
ans =

49
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>> length( strmatch( rs{2,3}, out.gsm.acc(:,1) ) )
ans =
95

Apparently, both are GPL96, which is a Affymetrix GeneChip Human Genome U133
Array Set HG-U133A, which you can simply use the command

>> rs = SQLiteQuery( ’GEOmetadb.sqlite’, ’SELECT * FROM gpl WHERE gpl=’’GPL96°’;’ );

to examine the details of this array platform. The GSE1561 has 49 samples, and GSE5847
has 95 samples. Suppose we would like to take the latest deposition to GEO, GSE5847 for
analysis, there are two choices to proceed: 1) use seriesMatrix, or 2) download every attach-
ment and process accordingly. Here we present the steps by using seriesMatrix. The second
choice envolving downloading individual .cel file and then using standard MATLAB bioin-
formatics Toolbox functions. For reading seriesMatrix, we have provided some functions
for quick data access,

>> data = GEOReadsMatrix( ’GSE5847’ );

Checking this URL = ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/GSE6847/GSES847 _series_matr
Total of 95 columns (samples)...

Get GPL annotation...

Checking this URL = ftp://ftp.ncbi.nih.gov/pub/geo/DATA/annotation/platforms/GPL96.annot.gz, dow
Map IDs ...

What do you get from GEOReadsMatrix function? Here is a quick look at all elements of
data,

>> data

data =
Series: [1x1 struct]
Samples: [1x95 struct]
refID: {22283x1 cell}
value: [22283x95 doublel
gplAnnot: [1x1 struct]
idmap: [22283x1 double]
probeAnnot: [1x1 struct]

Obviously, it contains all information (and in the right order in terms of probe annotation)
necessary for further analysis: sample information is stored in data.Samples, and gene anno-
tation is stored in data.probeAnnot, and data matrix is stored in data.value. data.gplAnnot
is the annotation file associated with the GPL, but the annotation may not be in the same
order required for data matrix. We keep data.gplAnnot in the structure because it is the
original (and may be more or less number of annotation required for data matrix). The an-
notation downloaded from GEO contains (which follow exactly the same order and content
of GEO platform annotation),

>> data.probeAnnot
ans =
Platform: [1x1 struct]
ID: {22283x1 cell}
Gene_title: {22283x1 cell}
Gene_symbol: {22283x1 cell}
Gene_ID: {22283x1 cell}
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UniGene_title: {22283x1 cell}

UniGene_symbol: {22283x1 cell}

UniGene_ID: {22283x1 cell}

Nucleotide_Title: {22283x1 cell}

GI: {22283x1 cell}

GenBank_Accession: {22283x1 cell}
Platform_CLONEID: {22283x1 cell}

Platform_ORF: {22283x1 cell}

Platform_SPOTID: {22283x1 cell}
Chromosome_location: {22283x1 cell}
Chromosome_annotation: {22283x1 cell}
Gene_Ontology_Function_term: {22283x1 cell}
Gene_Ontology_Process_term: {22283x1 cell}
Gene_Ontology_Component_term: {22283x1 cell}
Gene_Ontology_Function_identifier: {22283x1 cell}
Gene_Ontology_Process_identifier: {22283x1 cell}
Gene_Ontology_Component_identifier: {22283x1 cell}

The following lines will display first 47 sample information (there are total of 95 samples).

>> for i = 1:47
fprintf( 1, *%d -> %s, %s\n’, i, data.Samples(i).source_name_chi{1},
data.Samples(1).characteristics_chi{1} );
end

\4
v

-> human breast cancer stroma, IBC
-> human breast cancer stroma, IBC
-> human breast cancer stroma, IBC
-> human breast cancer stroma, IBC
human breast cancer stroma, IBC
-> human breast cancer stroma, IBC
-> human breast cancer stroma, IBC
-> human breast cancer stroma, IBC

©O© 0 ~N O Ok WN -
|
v

-> human breast cancer stroma, IBC
10 -> human breast cancer stroma, IBC
11 -> human breast cancer stroma, IBC
12 -> human breast cancer stroma, IBC
13 -> human breast cancer stroma, IBC
14 -> human breast cancer stroma, non—-IBC
15 -> human breast cancer stroma, non—-IBC
16 —-> human breast cancer stroma, non—-IBC
17 -> human breast cancer stroma, non-IBC
18 -> human breast cancer stroma, non—-IBC
19 -> human breast cancer stroma, non—-IBC
20 —-> human breast cancer stroma, non-IBC
21 -> human breast cancer stroma, non—-IBC
22 —-> human breast cancer stroma, non-IBC
23 -> human breast cancer stroma, non-IBC
24 -> human breast cancer stroma, non—-IBC
25 -> human breast cancer stroma, non-IBC
26 —> human breast cancer stroma, non—-IBC
27 -> human breast cancer stroma, non-IBC
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28 —-> human breast cancer stroma, non—-IBC
29 -> human breast cancer stroma, non-IBC
30 —-> human breast cancer stroma, non—-IBC
31 -> human breast cancer stroma, non—-IBC
32 —-> human breast cancer stroma, non—-IBC
33 —-> human breast cancer stroma, non-IBC
34 -> human breast cancer stroma, non—-IBC
35 —-> human breast cancer stroma, non—-IBC
36 —> human breast cancer stroma, non—-IBC
37 -> human breast cancer stroma, non-IBC
38 —-> human breast cancer stroma, non—-IBC
39 —-> human breast cancer stroma, non—-IBC
40 -> human breast cancer stroma, non-IBC
41 -> human breast cancer stroma, non-IBC
42 -> human breast cancer stroma, non-IBC
43 -> human breast cancer stroma, non-IBC
44 -> human breast cancer stroma, non-IBC
45 -> human breast cancer stroma, non-IBC
46 -> human breast cancer stroma, non-IBC
47 -> human breast cancer stroma, non-IBC

As we can see there are 13 non-IBC and 34 IBC samples from stroma cells. To find
significantly differentially expressed genes in stroma cells between IBC and non-IBC, we
have,

>> logValue = log2( data.value );
>> p = mattest( logValue(:,1:13), logValue(:,14:47) );
>> idx = find( p < 0.001 );

where p is the p-value obtained from t-test (mattest), and idx is the indices to the p-value
vector where p value is less than 0.001. We directly selecting genes at p < 0.001, we have
about 127 genes. In practice, one may choose to use different false-discovery rate (FDR)
to control the false positive. However, since it is not our intention to explain the analysis
method in this manual, we only provide some examples for FDR based gene selection without
elaboration.

>> fdr = mafdr( p ); % this is the FDR control by Storey (2002)
>> fdr = mafdr( p,’BHFDR’, ’true’); % this is the Benjamini-Hochberg.

In following examples, we use 127 genes selected by simple p-value less than 0.001. To
view dendrogram/clusters of gene expression, we have (and result is shown in figure 2),

>> zValue = zscore(logValue(idx,1:47)°)’;
>> genelabels = data.probeAnnot.Gene_symbol(idx);
>> clustergram( zValue, ’DIMENSION’, 2, ’ROWLABELS’, geneLabels );

One may notice that there are 48 IBC samples derived from epithelium cells. One of the
natural questions is whether this 127 differential expressed genes from IBC troma cells can
be used as signature gene set to correctly classify IBC epithelium cells. Here we provide a
quick kNN classification approach just to demonstrate the utility of the GEOTools,

>> groups = [repmat( {’IBC’}, 1, 13) repmat( {’non-IBC’}, 1, 34 )];
>> class = knnclassify( logValue(idx, 48:95)°, logValue(idx,1:47)’, groups );
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Figure 2: Clustergram from 127 selected genes and 47 samples.

There are some particular MATLAB coding details here: the first line set up the training
group assignment (first 13 is IBC, and rest is non-IBC). The second line does the KNN
classification (since knnclassify performs on row, while most microarray data store sample
data in columns, therefore we have to transpose the matrix, or in MATLAB, simply a after
matrix. Default KNN algorithm chooses k = 1). The result is

>> for i = 1:47
fprintf( 1, ’%9s -> %s\\n’, data.Samples(i+47).characteristics\_chi{1}, class{i} );

end
IBC -> IBC
IBC -> IBC
IBC -> IBC
IBC -> IBC
IBC -> IBC
IBC -> IBC
IBC -> IBC
IBC -> IBC

IBC -> non-1IBC
IBC -> non-1IBC

IBC -> IBC
IBC -> non-1IBC
IBC -> IBC

non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
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non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> IBC

non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC
non-IBC -> non-IBC

Notice that first 13 samples from epithelium cells are also IBC, the classification result
shows first 13 samples to be 10 IBC and 3 non-IBC (wrong classification results). Overall,
there are 4 mistakes in the assignment, which yields classification accuracy to be (48-4)/48,
or about 92%. Note that to fully implement classification scheme, one needs to add cross-
validation into the algorithm, which is another subject beyond this user manual.
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